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HIERARCHICAL ARBITRATION

BACKGROUND

The present disclosure relates generally to integrated cir-
cuits, such as field programmable gate arrays (FPGAs). More
particularly, the present disclosure relates to enhancing speed
and reducing the amount of programmable space used by
arbitration logic in an integrated circuit (e.g., an FPGA).

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present disclosure, which are described and/or claimed
below. This discussion is believed to be helpful in providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are
to be read in this light, and not as admissions of prior art.

Integrated circuits (ICs) take a variety of forms. For
instance, field programmable gate arrays (FPGAs) are inte-
grated circuits that are intended as relatively general-purpose
devices. FPGAs may include logic that may be programmed
(e.g., configured) after manufacturing to provide any desired
functionality that the FPGA is designed to support. Thus,
FPGAs contain programmable logic, or logic blocks, that
may be configured to perform a variety of functions on the
FPGAs, according to a designer’s design. Additionally,
FPGAs may include input/output (I/O) logic, as well as high-
speed communication circuitry. For instance, the high-speed
communication circuitry may support various communica-
tion protocols and may include high-speed transceiver chan-
nels through which the FPGA may transmit serial data to
and/or receive serial data from circuitry that is external to the
FPGA.

In network or bus topologies, components receiving com-
mands (e.g., requests) from multiple masters may utilize arbi-
tration to grant access to only a single master data payload at
a time. Accordingly, an FPGA may include an arbitration
scheme that provides shared access of the component with
multiple masters. However, such arbitration schemes may
utilize a significant portion ofthe FPGA programmable logic.
Further many arbitration schemes cannot be sub-divided,
causing the arbitration schemes to be on the critical path of
many FPGA designs, often being a bottle-neck. Thus, current
arbitration schemes of FPGAs are problematic, making it
challenging for FPGAs to achieve improved system on chip
design performance.

SUMMARY

A summary of certain embodiments disclosed herein is set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not
intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

Present embodiments relate to systems, methods, and
devices for improving system on chip design performance
through enhanced arbitration methods in a designer’s FPGA
design. In particular, the present embodiments may provide
FPGAs the ability to increase maximum operating frequency
of'the FPGA, commonly referred to as fimax, and decrease the
area used by arbitration through hierarchically arbitrating the
masters using several levels of arbitration. For example, in
one embodiment, an integrated circuit device implementing
such features may be configured to arbitrate multiple master
requests using multiple arbitration blocks on a first level.
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Each arbitration block on the first level may arbitrate between
two masters. A second level of arbitration blocks may be
utilized to arbitrate between the first level arbitration blocks.
Each arbitration block on the second level may arbitrate
between two arbitration blocks on the first level. Further, the
integrated circuit device may be configured to hierarchically
multiplex the master payloads in parallel with the hierarchical
arbitration of the master requests. A first level of multiplexers
may multiplex master payloads based upon the results of the
first level arbitration. Each of the first level multiplexers may
multiplex between two master payloads. A second level of
multiplexers may multiplex the payloads sent by the first level
of multiplexers. Each multiplexer on the second level may
multiplex between two multiplexers on the first level. Addi-
tional levels of arbitration blocks and multiplexers may be
added until a single arbitration block and a single multiplexer
block are present on a level.

Various refinements of the features noted above may exist
in relation to various aspects of the present disclosure. Further
features may also be incorporated in these various aspects as
well. These refinements and additional features may exist
individually or in any combination. For instance, various
features discussed below in relation to one or more of the
illustrated embodiments may be incorporated into any of the
above-described aspects of the present invention alone or in
any combination. Again, the brief summary presented above
is intended only to familiarize the reader with certain aspects
and contexts of embodiments of the present disclosure with-
out limitation to the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better understood
upon reading the following detailed description and upon
reference to the drawings in which:

FIG. 1 is a block diagram of a programmable logic device
that may include logic configured to hierarchically arbitrate
masters, in accordance with aspects of the present disclosure;

FIG. 2 is a block diagram illustrating the relationships
between a set of masters, an arbitrator, and a component
receiving requests from multiple masters;

FIG. 3 is a block diagram illustrating an example of a
carry-chain arbitration scheme;

FIG. 4 is a block diagram of a hierarchical arbitration
scheme, in accordance with an embodiment;

FIG. 5 depicts a flowchart illustrating a process for gener-
ating a hierarchical arbitration scheme, in accordance with an
embodiment of the present disclosure;

FIG. 6 is a block diagram showing an embodiment of a
weighted hierarchical arbitration scheme, in accordance with
an embodiment; and

FIG. 7 is a chart illustrating a performance comparison of
an FPGA that includes hierarchical arbitration in accordance
with embodiments of the present disclosure, with respect to
an FPGA that includes non-hierarchical arbitration.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

One or more specific embodiments will be described
below. In an effort to provide a concise description of these
embodiments, not all features of an actual implementation are
described in the specification. It should be appreciated that in
the development of any such actual implementation, as in any
engineering or design project, numerous implementation-
specific decisions must be made to achieve the developers’
specific goals, such as compliance with system-related and
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business-related constraints, which may vary from one imple-
mentation to another. Moreover, it should be appreciated that
such a development effort might be complex and time con-
suming, but would nevertheless be a routine undertaking of
design, fabrication, and manufacture for those of ordinary
skill having the benefit of this disclosure.

As discussed in further detail below, embodiments of the
present disclosure relate generally to circuitry for hierarchi-
cally arbitrating masters with components of a designer’s
integrated circuit (IC) design. In particular, IC designs that
include hierarchical arbitration logic may result in the ICs
that operate more efficiently (e.g., may operate at higher
operating speed (“fmax”) and/or reduce area usage). For
instance, when the IC design utilizes traditional round-robin
arbitration implemented with carry chains, a significant por-
tion of programmable logic may be utilized to store the arbi-
tration logic. Further, in many such IC designs, the carry-
chain arbitration is on the critical path (e.g., the path defining
a clock delay) of the IC design. In contrast, the present
embodiments describe various techniques for implementing
hierarchical arbitration logic, which may utilize less chip
area, but may also have a shorter critical path, thus improving
the IC design. Certain particular examples presented below
will relate to field programmable gate arrays (FPGAs). How-
ever, it should be understood that the present disclosure
relates to any integrated circuits with suitable circuitry.

With the foregoing in mind, FIG. 1 illustrates an integrated
circuit (IC) device 10, which may be a programmable logic
device, such as a field programmable gate array (FPGA). For
the purposes of this example, the device 10 is referred to as an
FPGA, though it should be understood that the device may be
any type of programmable logic device. As shown, FPGA 10
may have input/output circuitry 12 for driving signals off of
device 10 and for receiving signals from other devices via
input/output pins 14. Interconnection resources 16, such as
global and local vertical and horizontal conductive lines and
buses, may be used to route signals on device 10. Addition-
ally, interconnection resources 16 may include fixed intercon-
nects (conductive lines) and programmable interconnects
(i.e., programmable connections between respective fixed
interconnects). Programmable logic 18 may include combi-
national and sequential logic circuitry. For example, pro-
grammable logic 18 may include look-up tables, registers,
and multiplexers. In various embodiments, the program-
mable logic 18 may be configured to perform a custom logic
function. The programmable interconnects associated with
interconnection resources may be considered to be a part of
programmable logic 18. As discussed in further detail below,
the FPGA 10 may include arbitration circuitry configured to
hierarchically arbitrate multiple masters, which may improve
FPGA operation.

Programmable logic devices, such as FPGA 10, may con-
tain programmable elements 20 with the programmable logic
18. For example, after manufacturing, a designer (e.g., a
customer) may program (e.g., configure) the programmable
logic 18 to perform one or more desired functions. By way of
example, some programmable logic devices may be pro-
grammed by configuring their programmable elements 20
using mask programming arrangements, which is performed
during semiconductor manufacturing. Other programmable
logic devices are configured after semiconductor fabrication
operations have been completed, such as by using electrical
programming or laser programming to program their pro-
grammable elements 20. In general, programmable elements
20 may be based on any suitable programmable technology,
such as fuses, antifuses, electrically-programmable read-
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only-memory technology, random-access memory cells,
mask-programmed elements, and so forth.

Most programmable logic devices may be electrically pro-
grammed. With electrical programming arrangements, the
programmable elements 20 may be formed from one or more
memory cells. For example, during programming, configura-
tion data is loaded into the memory cells 20 using pins 14 and
input/output circuitry 12. In one embodiment, the memory
cells 20 may be implemented as random-access-memory
(RAM) cells. The use of memory cells 20 based on RAM
technology, as described herein, is intended to be only one
example. Further, because these RAM cells are loaded with
configuration data during programming, they are sometimes
referred to as configuration RAM cells (CRAM). These
memory cells 20 may each provide a corresponding static
control output signal that controls the state of an associated
logic component in programmable logic 18. For instance, in
some embodiments, the output signals may be applied to the
gates of metal-oxide-semiconductor (MOS) transistors
within the programmable logic 18.

The circuitry of FPGA 10 may be organized using any
suitable architecture. As an example, the logic of FPGA 10
may be organized in a series of rows and columns of larger
programmable logic regions, each of which may contain mul-
tiple smaller logic regions. The logic resources of FPGA 10
may be interconnected by interconnection resources 16 such
as associated vertical and horizontal conductors. For
example, in some embodiments, these conductors may
include global conductive lines that span substantially all of
FPGA 10, fractional lines such as half-lines or quarter lines
that span part of device 10, staggered lines of a particular
length (e.g., sufficient to interconnect several logic areas),
smaller local lines, or any other suitable interconnection
resource arrangement. Moreover, in further embodiments,
the logic of FPGA 10 may be arranged in multiple levels or
layers in which multiple large regions are interconnected to
form still larger portions of logic. Still further, other device
arrangements may use logic that is not arranged in a manner
other than rows and columns.

As discussed above, the FPGA 10 may allow a designer to
create a customized design capable of executing and perform-
ing customized functionalities. Typically, a given FPGA
design may have a unique number of masters that initiate
requests of components of the FPGA design. As will be
discussed in more detail with regards to FIG. 2, the masters
may need to be arbitrated through logic on the FPGA 10.

Referring now to FIG. 2, a block diagram 40 illustrates the
relationships between multiple masters 42, an arbitrator 48,
and a component 50 receiving requests from the multiple
masters 42. As illustrated in FIG. 2 some designs may include
multiple masters 42 that initiate requests 44 of the master’s
payload 46 to a component 50 of the FPGA design 40. When
multiple masters 42 are enabled to make requests 44 of the
component 50, an arbitrator 48 may be utilized to prevent
multiple masters 42 from making requests 44 of the compo-
nent 50 simultaneously. In other words, the arbitrator 48
ensures that access of the component 50 is granted to a single
master at a time.

Typically, a “fair” arbitration scheme is implemented,
which provides an equal share of access to the component 50
by each of the multiple masters 42. As will be discussed in
more detail below, fair arbitration may also be weighted, such
as by providing one master (e.g., M1) a greater share of access
to the component 50, while providing equal shares of access
to the other masters (e.g., M2, M3, and M4). One method of
fair arbitration is a round-robin scheme. The round-robin
scheme assigns equal shares of access of the component 50 to
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each of the multiple masters 42 in a sequential and circular
order. Forexample, in FIG. 2, the arbitrator 48, using a round-
robin scheme, may permit access to M1, then M2, then M3,
then M4, and then back to M1.

FIG. 3 illustrates a non-hierarchical arbitration scheme 68
using round-robin arbitration. Generally, the round-robin
arbitrator 48 may include a carry-chain that determines which
of'the requests 44 will be granted access to the component 50.
For example, the round-robin arbitrator 48 may include a
large ripple carry adder implemented to grant access in a
sequential fashion. The ripple carry adder may provide a
grant-bitassociated with one of the requests 44 at a time. Each
request 44 is associated with a payload 46. Upon a request’s
grant bit being provided to an AND gate 70 associated with
the request 44 and the payload 46, the payload 46 with the
grant bit will be granted access to the component 50 through
the OR gate 72.

When relying on carry chains to implement arbitration, it
may be difficult to pipeline (e.g., allowing overlapping execu-
tion of multiple instructions). For example, pipelining is typi-
cally enabled through dividing circuitry into stages such that
multiple actions may take place at one time. It may be very
difficult to break a long carry chain to insert registers at
intermediate stages of the carry chain implementation such
that pipelining may occur. Additionally, the carry chain logic
may utilize a large area of programmable logic and/or may be
inefficient.

To enhance the arbitration scheme, hierarchical arbitration
may be implemented. FIG. 4 is a block diagram of a hierar-
chical arbitration scheme 90, in accordance with an embodi-
ment. As shown in FIG. 4, multiple levels of arbitration
blocks 92 and 94 may be utilized to hierarchically arbitrate
the requests 44 of the masters. Further, multiple levels of
multiplexers 96 and 98 may be used to multiplex the payloads
46 of the masters. The requests 44 and payloads 46 may be
arbitrated and multiplexed hierarchically to a binary encod-
ing (e.g., determinable by a “1” or “0”), which may offer
significant performance increases. For example, the critical
path may be reduced, explicit calculation of an entire grant
signal may not be needed, the programmable logic area uti-
lized may be decreased, and/or finer grain pipelining may be
possible. However, in some embodiments, the grant signal
may be provided by augmenting the payloads 46 to include
encoded master identifiers.

In the hierarchical arbitration scheme 90, the first level 92
of arbitration blocks 100 may include an arbitration block 100
for every two masters 44 present in the FPGA design. For
example, as illustrated, four masters (e.g., four master
requests 44 (R1-R4) and four master payloads 46 (D1-D4))
are present. Thus, two arbitration blocks 100 are useful for
arbitrating the master requests 44 at the first level 92. In the
illustrated embodiment, two masters provide master requests
R1 and R2 to an arbitration block RR1 and two masters
provide requests R3 and R4 to a separate arbitration block
RR2 onthe samelevel 92. An additional level 94 of arbitration
blocks 101 is provided to arbitrate the previous level 92 of
arbitration blocks 100. In the present embodiment, each arbi-
tration block 101 in the additional level 94 arbitrates between
two arbitration blocks 100 in the previous level 92. For
example, because the first level 92 contains two arbitration
blocks RR1 and RR2, only one arbitration block 101 is
needed on the additional level 94. As will be discussed in
more detail with regards to FIG. 5, additional levels of arbi-
tration may be added until only one arbitration block 101 is
contained on a final level. For example, for eight master
requests, a first level of arbitration blocks may include four
arbitration blocks (each receiving two of the requests), a
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second level of arbitration blocks may include two arbitration
blocks (each receiving the out of two of the four arbitration
blocks from the first level), and a third level may include a
signal arbitration block receiving the outputs of the two arbi-
tration blocks from the second level.

Hierarchical multiplexing works in a similar fashion to the
arbitration discussed above. A first level 96 of multiplexers
102 may include one multiplexer 102 for every two master
payloads 46 in the FPGA design. The master payloads 46 are
multiplexed based upon the immediate result of the arbitra-
tion of a corresponding arbitration block 100. For example, as
illustrated in FIG. 4, multiplexer MUX1 on the first level 96 of
multiplexers 102 is associated with arbitration block RR1 on
the first level 92 of arbitration blocks 100. Multiplexer MUX2
is associated with arbitration block RR2. An additional level
98 of multiplexers 103 is provided to multiplex the signals
output from the previous level 96 of multiplexers 102. Each
multiplexer 103 in the additional level 98 multiplexes signals
from two multiplexers 102 in the previous level 96. For
example, because the first level 96 contains two multiplexers
MUX1 and MUX2, one multiplexer MUX3 is provided on the
additional level 98. Multiplexer MUX3 is associated with
arbitration block RR3 and is configured to multiplex data
payload signals based upon the immediate result of the arbi-
tration of arbitration block RR3. As will be discussed in more
detail with regards to FIG. 5, additional levels of multiplexing
may be added until only one multiplexer 103 is contained on
a level. Once the final multiplexer 103 multiplexes its input
signals and provides an output, the payload 46 of one master
is granted to the component 50.

In some embodiments, the hierarchical arbitration scheme
includes arbitration blocks 100 that provide two outputs 104
in the form of a Shannon expansion. For example, one output
104 provides an arbitration output based upon the assumption
that the arbitration blocks 100 in the subsequent levels 94 will
select the current arbitration block 100 and another output
105 provides an arbitration output based upon the assumption
that the remaining levels of arbitration blocks 100 will not
select the current arbitration block 100. The next level 94 of
arbitration blocks 100 takes the shannonized outputs 104 and
105 from the previous level 92 and arbitrates another set of
shannonized outputs 104 based upon the same assumptions.
The arbitration blocks 100 are generated until only one arbi-
tration block 101 exists in a level. The first level 96 of multi-
plexers 102 multiplex between two payload 46 data signals
based upon a local priority selection bit. A payload 46 data
signal is propagated through the subsequent levels of multi-
plexers 102 until only one multiplexer 103 remains. At that
point, the propagated master payload 46 is provided access to
the component 50.

The hierarchal arbitration and multiplexing techniques
described herein may be expressed using a hardware descrip-
tion language, such as Verilog or VHDL.. Table 1 below pro-
vides an embodiment of hierarchical arbitration and multi-
plexing implemented using Verilog. In the provided
implementation, “s1,”“c1,”“s0,” and “c0” represent the shan-
nonized outputs 104 from two arbitration blocks 100 on a
previous level (e.g., level 92). “sd1,” “cdl,” “sd0,” and “cd0”
represent the propagated payload data signals from the mul-
tiplexers 102 in the previous level (e.g., level 96). Addition-
ally, “c” and “s” represent the arbitration outputs 104 and 105,
one assuming that the arbitration block will be selected by the
remaining arbitration blocks and the other assuming that the
arbitration block will not be selected by the remaining arbi-
tration blocks. Further, “cd” and “sd” represent the propa-
gated data payload 46 signals from the multiplexers 102. The
Verilog code is implemented in such a manner that it can be
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recursively instantiated until a single master is arbitrated. For
example, in certain embodiments, a parameterized hardware
description language, may recursively loop to generate the
levels of the hierarchy. Further, in some embodiments, one bit
of a priority grant signal may be used to determine a local
priority of arbitration in the arbitration block.

TABLE 1

Example of Hierarchal Arbitration using Verilog

assign ¢ = (grant_bit ? ¢l : (c0 | s1));

assign s = sl : s0;

assign cd = (grant_bit? Cd1 : (c0 ? ¢d0 : cdl));
assign sd =s0 ? sd0 : sdl;

As can be further appreciated, FPGA design software, such
as Quartus® from Altera Corporation of San Jose, Calif., may
enable programming of intellectual property (IP) cores (e.g.,
functional configuration data streams) into the FPGA 10. For
instance, one [P-core may include the hierarchical arbitration
scheme 90 discussed above. The FPGA design software may
also include a user interface (e.g., a wizard) that allows a user
to incorporate the hierarchical arbitration scheme 90 into the
user’s FPGA design. For example, the FPGA software may
include a drag and drop interface that allows a designer to
incorporate a hierarchical arbitration IP-core into an FPGA
design simply by selecting the hierarchical arbitration
scheme 90 in the design software and moving it into the
FPGA logic.

The FPGA software may additionally include functionality
to model a network bus based upon a number of masters 42
and components 50 in a designer’s FPGA design. For
instance, the FPGA software may analyze the FPGA design
to determine whether or not to use a hierarchical arbitration
scheme 90. In some embodiments, the FPGA software may
determine whether or not to use a hierarchical arbitration
scheme 90 based upon the number of masters 42 in the system
and/or the desirability of pipelining in the FPGA design. For
example, if an FPGA design has a large number of masters 42
(e.g., 9 or more masters) and/or no pipelining is desired, the
FPGA software may choose to implement a non-hierarchical
arbitration scheme 48. When the number of masters 42 is low
(e.g., less than 9) and/or pipelining is desirable, the FPGA
software may determine to use a hierarchical arbitration
scheme 90. Other metrics and/or properties of the FPGA
design may be useful in determining whether or not to use a
hierarchical arbitration scheme 90. For example, the FPGA
software may determine to use a hierarchical arbitration
scheme 90 to preserve the amount of unused programmable
logic in the FPGA. In some embodiments, as will be
described in more detail below with regards to FIG. 6, it may
be desirable to implement weighted arbitration that provides
a higher share of access of a component to one or more
specific masters, with the remaining masters having a lesser
but equal share of access to the component. Such weighted
arbitration may be more easily synthesized by the FPGA
software using the hierarchical arbitration scheme 90. Thus,
the FPGA software may determine to use the hierarchical
arbitration scheme 90 when a weighted arbitration scheme is
desired.

When the FPGA software determines that a hierarchical
arbitration scheme should be implemented, the FPGA soft-
ware may add the hierarchical arbitration scheme to the
FPGA design. Alternatively, as discussed above, a hardware
description language may generate the hierarchical arbitra-
tion scheme. FIG. 5 is a flow diagram illustrating a process
120 for generating a hierarchical arbitration scheme 90. A
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first level of arbitration blocks is generated (block 122). The
number of arbitration blocks generated on the first level
depends on the number of masters to be arbitrated. Each
arbitration block arbitrates two masters, thus providing a
binary encoded arbitration. Thus, the number of arbitration
blocks in the first level will be half of the number of masters.
In other embodiments, as will be described in more detail
with regards to FIG. 6, some arbitration blocks may arbitrate
fewer or more than two masters.

To determine if a second level of arbitration is necessary,
the FPGA software or hardware description language deter-
mines if there is only one arbitration block on the first level
(block 124). For example, if there were only two masters in
the FPGA design, only one arbitration block would be gen-
erated on the first level. If there is only one arbitration block,
the generation of the hierarchical arbitration scheme is com-
plete and the process is ended (block 126). If, however, more
than one arbitration block is on the generated level, an addi-
tional level of arbitration blocks is generated (block 128).
Each of the arbitration blocks in the additional level arbitrates
between two arbitration blocks of the previous level. Thus,
the number of arbitration blocks in the additional level will be
half the number of blocks in the previous level. The FPGA
software or hardware description language may then deter-
mine if there is only one block in the newly generated level
(block 130). If there is only one block, the generation of the
hierarchical arbitration scheme is complete and may be ended
(block 126). If however, there are more than one arbitration
blocks in the level, block 128 is repeated, creating additional
arbitration block levels until only one arbitration block is in a
level. At that point, the hierarchical arbitration scheme is fully
generated and may be added to the FPGA design by the FPGA
software.

As previously discussed, in some embodiments, the hier-
archical arbitration scheme may be used to more easily syn-
thesize a weighted arbitration scheme through the FPGA
software. FIG. 6 illustrates a weighted arbitration scheme 150
implemented through a hierarchical arbitration scheme. For
simplicity, FIG. 6 illustrates hierarchical arbitration and mul-
tiplexing blocks 152 that include both the master request
arbitration and the master payload multiplexing. The
weighted arbitration scheme 150 may provide more access of
a component 50 by one master 42 than other masters 42. For
example, in the embodiment depicted in FIG. 6, master M1 is
granted twice the amount of access to the component 50 as
compared to masters M2 and M3.

In non-hierarchical arbitration schemes, a weighted arbi-
tration scheme may require the use of a separate counter to
control arbitration weights. For example, the counter would
be used to determine a disproportionate share of access for
M1. By using the hierarchical arbitration scheme to imple-
ment the weighted arbitration, no such counter may be
needed. Further, the weighted arbitration scheme 150 may
more easily be synthesized through using the hierarchical
arbitration scheme. For example, in the hierarchical arbitra-
tion scheme 90 discussed above, each arbitration block 100 in
the first level 92 of arbitration blocks 100 receives inputs from
two masters 42. In the weighted arbitration scheme 150, one
or more one or more arbitration and multiplexing blocks 152
in the first level 92 may take two sets of inputs from one
master 42 designated to have increased access over the other
masters 42. In the example depicted in FIG. 6, master M1 has
been granted access to the component 50 twice as often as
masters M2 and M3. In the present embodiment the multi-
plexing block RRMUX1 receives the master M1 as both of'its
inputs. Thus, the arbitration and multiplexing block
RRMUX1 will always arbitrate and multiplex a grant for
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master M1. Arbitration and multiplexing block RRMUX2,
receiving inputs from both masters M2 and M3, will alternate
grants between the masters M2 and M3. Arbitration and mul-
tiplexing block RRMUX3 will arbitrate and multiplex
between arbitration and multiplexing blocks RRMUX1 and
RRMUX2, arbitrating and multiplexing a grant for master
M1 twice as many times as arbitrating a grant for masters M2
and M3.

FIG. 7 illustrates measured performance variances for a set
of synthetic benchmarks for FPGA designs with a number of
masters ranging from 1 to 32. For instance, the chart 170
depicted in FIG. 7 provides a comparison of percentages of
maximum operating frequency (FMAX) speedup 172 of an
FPGA 10 through using a hierarchical arbitration scheme
over a non-hierarchical arbitration scheme for FPGA designs.
The benchmark tests were completed for FPGA designs con-
taining between 1 and 32 masters. In this particular example,
an FPGA design 174 with 3 masters produced an approxi-
mately 35% increase inthe FMAX, resulting from a reduction
in the critical path length of approximately 400-800 picosec-
onds. Further, an FPGA design 176 with 4 masters provided
an approximately 20% increase in the FMAX. As illustrated,
FPGA designs 178 with 9 or more masters may produce a
slight decrease in performance. However, the hierarchical
arbitration scheme may result in a reduction of utilized pro-
gramming logic over non-hierarchical arbitration schemes,
and thus, may still be desirable in certain FPGA designs. For
example, in the synthetic benchmarks, the average area of
programmable logic was reduced by approximately 6% by
utilizing the hierarchical arbitration scheme.

While the embodiments set forth in the present disclosure
may be susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and have been described in detail
herein. However, it should be understood that the disclosure is
not intended to be limited to the particular forms disclosed.
The disclosure is to cover all modifications, equivalents, and
alternatives falling within the spirit and scope of the disclo-
sure as defined by the following appended claims.

What is claimed is:

1. A method of arbitrating a plurality of masters in an
integrated circuit (IC), the method comprising:

arbitrating, via at least two arbitration blocks in a first level

of arbitration blocks, at least two master requests in the
1C;

arbitrating, via at least one arbitration block in a second

level of arbitration blocks, at least two output signals of
the first level arbitration blocks;

multiplexing, via at least two multiplexers in a first level of

multiplexers, at least two master payloads in the IC
based at least in part upon the arbitration of the first level
of arbitration blocks; and

multiplexing, via at least one multiplexer in a second level

of multiplexers, at least two signal payloads propagated
from the first level of multiplexers.

2. The method of claim 1, wherein arbitration in the first
level of arbitration blocks occurs in parallel with multiplexing
in the first level of multiplexers, and arbitration in the second
level of arbitration blocks occurs in parallel with multiplexing
via the at least one multiplexer in the second level of multi-
plexers.

3. The method of claim 1, wherein arbitration in the first
level of arbitration blocks comprises a round-robin arbitration
scheme.

4. The method of claim 1, wherein arbitration in the first
level of arbitration blocks comprises a binary encoding for
each of the at least two arbitration blocks.
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5. The method of claim 1, further comprising arbitration in
one or more additional levels of arbitration blocks and mul-
tiplexing in one or more additional levels of multiplexers until
a single output signal is found on a level of arbitration blocks
and a single output signal payload is found on a level of
multiplexers.
6. The method of claim 1, wherein arbitration in the first
level of arbitration blocks comprises arbitrating a single mas-
ter request in at least one arbitration block in the first level of
arbitration blocks and arbitrating two master requests in at
least another arbitration block in the first level of the arbitra-
tion blocks.
7. The method of claim 1, wherein arbitration in the first
level of arbitration blocks comprises arbitrating two master
requests.
8. The method of claim 1, further comprising generating an
encoded master grant by augmenting the at least two master
payloads to include encoded master identifiers.
9. The method of claim 1, comprising:
arbitrating in one or more additional levels of arbitration
blocks and multiplexing in one or more additional levels
of multiplexers;
wherein a first additional level of arbitration blocks com-
prises a number of arbitration blocks that is half that of
the number of the plurality of masters; and
each subsequent additional level of arbitration blocks com-
prises a number of arbitration blocks that is half that of
the prior additional level, until a single output signal is
found on a level of arbitration blocks.
10. An integrated circuit (IC) device, comprising:
programmable logic configured to store a programmable
design, wherein the programmable design is configured
to implement customized functions on the IC device;
a plurality of masters; and
hierarchical arbitration circuitry comprising:
a hierarchy of arbitration blocks with a plurality of levels,
wherein each arbitration block is configured to output a
pair of Shannon expansion outputs comprising:
a first output, wherein the first output is determined based
upon an assumption that arbitration blocks on a subse-
quent level will select the arbitration block as the highest
priority arbitration block; and
a second output, wherein the second output is determined
based upon an assumption that arbitration blocks on a
subsequent level will not select the arbitration block as
the highest priority arbitration block;
wherein an initial level of arbitration blocks receives an
input from the plurality of masters;

wherein a last level of arbitration blocks comprises a
single arbitration block that selects for outputting a
data payload of one of the plurality of masters based at
least in part upon the first and second outputs of each
of the arbitration blocks in the hierarchy.

11. The IC device of claim 10, wherein the programmable
logic comprises the hierarchical arbitration circuitry.

12. The IC device of claim 10, wherein the hierarchical
arbitration circuitry is configured to reduce a critical path
length of the IC device.

13. The IC device of claim 10, comprising one or more
registers disposed at the first output and the second output of
one or more of the arbitration blocks to enable pipelining at
one or more of the plurality of levels.

14. The IC device of claim 10, wherein at least one arbi-
tration block in the first level is configured as a weighted
arbitration block that receives an input from one master and at
least one arbitration block is configured as a non-weighted
arbitration block that receives an input from two masters, and
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wherein the masters providing input to the weighted arbitra-
tion blocks are at least twice as likely to be selected as an
output by the last level of arbitration blocks in comparison to
the non-weighted arbitration blocks.

15. The IC device of claim 10, wherein each of the arbitra-
tion blocks receives one bit of a priority grant signal to deter-
mine a local priority of arbitration.

16. The IC device of claim 11, wherein the hierarchical
arbitration circuitry comprises a configuration data stream
generated by programmable logic design software.

17. The IC device of claim 11, wherein the hierarchical
arbitration circuitry comprises an IP-core generated by a
recursively implemented hardware description language.

18. The IC device of claim 11, wherein an amount of
programmable logic used to implement the hierarchical arbi-
tration circuitry is less that an amount of programmable logic
used to implement non-hierarchical carry chain arbitration
circuitry.

19. A tangible computer-readable medium, comprising
instructions to:

provide a programmable logic interface for an integrated

circuit (IC), the programmable logic interface being
configured to enable a designer to implement an IC
design in programmable-logic of the IC;
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select an arbitration method comprising either hierarchical
or non-hierarchical arbitration based on a number of
masters in the IC design, weighted arbitration in the IC
design, pipelining in the IC design, or a combination
thereof;, and

generate an arbitrator scheme based on the selected arbi-

tration method.

20. The tangible computer-readable medium of claim 19,
comprising instructions to determine the arbitration method
as hierarchical arbitration when 4 or fewer masters are present
in the IC design.

21. The tangible computer-readable medium of claim 19,
comprising instructions to generate the arbitrator scheme by
generating recursive levels of arbitration blocks, each recur-
sive level reducing a number of inputs by half until a single
arbitration block is generated on a last level.

22. The tangible computer-readable medium of claim 19,
wherein the programmable logic interface is configured
enable the designer to specify connections to the masters in
the IC design, and wherein the instructions to select the arbi-
tration method are based upon the specified connections.

#* #* #* #* #*



